Pricing algorithms on digital platforms: between collusion and innovation
Main Article Content
Abstract
Objective: this article examines the impact of self-learning pricing algorithms on Brazilian competition law. It further explores how the agents behind anticompetitive conducts resulting from tacit collusion, caused without human intervention, should be analyzed and held accountable by the antitrust authority.
Method: the methodology was based on the narrative analysis of international literature on collusive
behaviors mediated by autonomous learning systems. Guidelines issued by antitrust authorities
and institutions from various jurisdictions, case law from Cade, Brazil’s competition authority, and
the European Union’s AI Act were examined with the aim of proposing normative parameters for
preventive action in Brazil.
Conclusions: the study finds that only autonomous learning algorithms—specifically machine learning and deep learning, that lead to "predictable agent" and "digital eye" forms of tacit collusion require a revamp of the Brazilian competition authority's traditional investigative mechanisms. Any investigation involving autonomous algorithmic collusion should be conducted under the rule of reason, considering (i) the absence of precedents involving algorithmic collusion without human intervention, both in Brazil and other jurisdictions, (ii) the pro-competitive potential and efficiency gains provided by pricing algorithms, and (iii) the low likelihood, so far, of algorithmic collusion without human intervention occurring in practice. In addition, Cade should adopt a preventive posture by issuing guidelines or recommendations on the topic, given the current normative, institutional, and technological immaturity in detecting algorithmic collusion in the Brazilian jurisdiction.
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos publicados são do(s) autor(es), com direitos da Revista de Defesa da Concorrência (RDC) sobre a primeira publicação, impressa e/ou digital.
O(s) autor(es) somente poderá(ão) utilizar os mesmos resultados em outras publicações indicando claramente a Revista de Defesa da Concorrência como o meio da publicação original. Se não houver tal indicação, considerar-se-á situação de autoplágio.
A reprodução, total ou parcial, dos artigos aqui publicados fica sujeita à expressa menção da procedência de sua publicação neste periódico, citando-se o volume e o número dessa publicação, além do link DOI para referência cruzada. Para efeitos legais, deve ser consignada a fonte de publicação original.
Por se tratar de periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais e científicas desde que citada a fonte, conforme a licença Creative Commons Attribution 4.0 International (CC BY 4.0).
How to Cite
References
AUTORITÉ DE LA CONCURRENCE; BUNDESKARTELLAMT. Algorithms and Competition. Bonn: Autorité de la Concurrence, 2019. Disponível em: https://bit.ly/47FGeSr. Acesso em: 21 fev. 2025.
BARBOSA, Mariana. Quase 60% das grandes empresas no Brasil já usam inteligência artificial nos negócios. O Globo, Rio de Janeiro, 2024. Disponível em: https://oglobo.globo.com/blogs/capital/post/2024/06/quase-60percent-das-grandes-empresas-no-brasil-ja-usam-inteligencia-artificial-nos-negocios.ghtml. Acesso em: 20 set. 2025.
CALVANO, Emilio; CALZOLARI, Giacomo; DENICOLÒ; PASTORELLO, Sergio. Artificial Intelligence, Algorithmic Pricing, and Collusion.
American Economic Review, v. 110, n. 10, 2020. DOI: 10.1257/aer.20190623. Disponível em: https://x.gd/zmHkH. Acesso em: 21 fev. 2025.
COMPETITION MARKETS AUTHORITY (CMA). Pricing Algorithms: Economic working paper on the use of algorithms to facilitate collusion and personalised pricing. London, United Kingdom: CMA, 2018. Disponível em: https://bit.ly/4oyr48s. Acesso em: 21 fev. 2025.
CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN, Clifford. Introduction to Algorithms. 4. ed. Londres, Inglaterra: The MIT Press, 2022. Disponível em: https://bit.ly/4nABcfK. Acesso em: 21 fev. 2025.
DORNER, Florian E. Algorithmic collusion: a critical review. arXiv, 2021. Disponível em: https://arxiv.org/pdf/2110.04740. Acesso em: 25 set. 2025.
EZRACHI, Ariel, STUCKE, Maurice E. Artificial Intelligence & Collusion: When Computers Inhibit Collusion. University of Illinois Law Review, 2017. Disponível em: https://bit.ly/4oqJ4BU. Acesso em: 21 fev. 2025.
FISH, Sara; GONCZAROWSKI, Yannai A.; SHORRER Ran I. Algorithmic Collusion by Large Language Models. Arxiv, 2025. DOI: https://doi.org/10.48550/arXiv.2404.00806. Disponível em: https://x.gd/5yNkzS. Acesso em: 24 set. 2025.
IBM. IBM Global AI Adoption Index 2022: New research commissioned by IBM in partnership with Morning Consult. Armonk: IBM Corporation, 2022. Disponível em: https://abes.org.br/wp-content/uploads/2022/09/IBM-Global-AI-Adoption-Index-2022.pdf. Acesso em: 20 set. 2025.
MEHRA, Salil K. Antitrust and the Robo-Seller: Competition in the Time of Algorithms. Minnesota Law Review, v. 100, 2016. Disponível em: https://bit.ly/49yYcs4. Acesso em: 21 fev. 2025.
MONOPOLKOMMISSION. Algorithms and collusion. Bonn, Alemanha: Monopolies Commission, 2018. Disponível em: https://bit.ly/3LGogHQ. Acesso em: 21 fev. 2025.
NIELSEN, Michael. Neural Networks and Deep Learning. [S. l.; s. n.], 2017. Disponível em: https://bit.ly/3JKhL6i. Acesso em: 21 fev. 2025.
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD). Algorithms and Collusion: Competition policy in the digital age. Paris: OCDE, 2017. Disponível em: https://bit.ly/3WzgMJ8. Acesso em: 21 fev. 2025.
RODRÍGUEZ, Manuel J. García; RODRÍGUEZ-MONTEQUÍN, Vicente; BALLESTEROS-PÉREZ, Pablo; LOVE, Peter E. D.; SIGNOR, Regis. Collusion detection in public procurement auctions with machine learning algorithms. Automation in Construction, v. 133, 2022. DOI: https://doi.org/10.1016/j.autcon.2021.104047. Disponível em: https://bit.ly/3LkioEg. Acesso em: 25 set. 2025.
SCHWALBE, Ulrich. Algorithms, machine learning, and collusion. Journal of Competition Law & Economics, v. 14, n. 4, 2018. DOI: https://doi.org/10.1093/joclec/nhz004. Disponível em: https://x.gd/OHfvT. Acesso em: 25 set. 2025.
SILVA, Glacus Bedeschi da Silveira; TEIXEIRA, Luiz Felipe Drummond; SANTANA, Mariana Damiani. Smart contracts concluídos por smart devices: entre o consentimento e o comportamento social típico. In: Direito, Tecnologia e Inovação: v. III: Aplicações Jurídicas De Blockchain. PARENTONI, Leonardo; MILAGRES, Marcelo de Oliveira; VAN DE GRAAF, Jeroen (coord.). Belo Horizonte: Expert, 2021. Disponível em: https://pos.direito.ufmg.br/downloads/Direito-tecnologia-e-Inovacao-1.pdf. Acesso em: 21 fev. 2025. p. 205-264.
SPANN, Martin; BERTINI, Marco; KOENIGSBERG, Oded; ZEITHAMMER, Robert; APARICIO, Diego; CHEN, Yuxin; FANTINI, Fabrizio; ZHE JIN, Ginger; MORWITZ, Vicki; LESZCZYC, Peter Popkowski; VITORINO, Maria Ana; WILLIAMS, Gizem Yalcin; YOO, Hyesung. Algorithmic Pricing: implications for consumers, managers, and regulators. Cambridge, EUA: NBER, 2025. Disponível em: https://bit.ly/49BD70f. Acesso em: 21 fev. 2025.
VAN UYTSEL, Steven. Artificial intelligence and collusion: A literature overview. SSRN, 2020. DOI: https://dx.doi.org/10.2139/ssrn.3656822. Disponível em: https://x.gd/oavoU. Acesso em: 25 set. 2025.
WEITZENBOECK, Emily M. Electronic Agents and the Formation of Contracts. International Journal of Law and Information Technology, v. 9, n. 3, 2001. DOI: https://doi.org/10.1093/ijlit/9.3.204. Disponível em: https://x.gd/nLT9u. Acesso em: 21 fev. 2025.
WILSON, Robert A.; KEIL, Frank C. The MIT Encyclopedia of the Cognitive Sciences. Cambridge: The MIT Press, 1999. Disponível em: https://web.mit.edu/morrishalle/pubworks/papers/1999_Halle_MIT_Encyclopedia_Cognitive_Sciences-paper.pdf. Acesso em: 21 fev. 2025.